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Abstract. Within the framework of the elliptic two-body problem, Nacozy defined and 
integmted a Sundman-type transformation of the time variable. The new independent variable 
T introduced through this device was termed the intermediate anomaly of Kepletian motion. 
We propose a general and systematic derivation of this kind of anomaly within a universal 
formulation and representation of the two-body problem, and Nacory's developments are thus 
generalized and adapted to yield a uniform treatment of Kepler motion. To this end, an essential 
analytical tool is provided by celain classes of special functions, the so-called universal functions 
and Stumpff >-functions. 

1. Introduction 

Within the framework of the elliptic two-body problem, Nacozy (1977) studied a Sundmn- 
qpe rransformation (Sundman 1912, pp 127,174) of the time variable given by a differential 
relation 

d t  = c,radr with 01 = and c, = l / f i  (1) 
where f stands for the physical time, r is the norm of the radius vector, and /L denotes the 
gravitational parameter of a two-body system. 

This differential relation was analytically integrated for pure Kepler motion in terms of 
an incomplete elliptic integral of the first kind whose modulus (or parameter) k is related 
to the numerical eccentricity e of the orbit, the argument (or amplitude) being half the true 
anomaly. The new independent variable r introduced through this device was termed as 
the intermediate anomaly of  Keplerian motion. 

In practical cases for space research, apart from theoretical investigations concerning 
perturbed motion, the improvement of numerical integrations is also to be considered. 
In general, the integration accuracy along the orbit is not homogeneous. For instance, 
integrating highly eccentric orbits involves fast varying functions; nevertheless, some 
transformations of the independent variable can smooth out a part of the variations of 
the functions in such a way that a constant step-size method can also be used. 

In other words: to ensure a sufficiently uniform distribution of orbital points for 
equidistant values of the independent argument, and avoid an unreasonable accumulation of 
integration steps in the neighbourhood of certain points and their excessive dissemination 
along other parts of the orbit, i.e. to achieve an adequate analytical step-size regulation, a 
change of independent variable can be invoked. 

0305-4470/95/226395+10$19.50 0 1995 IOP Publishing Ltd 6395 

' 



6396 L Florfa and R Caballero 

In order to obtain the solutions of various problems involving gravitational dynamical 
systems, defining an analytical step-size regulation was one of the purposes of introducing 
the reparametrization of time leading to the intermediate anomaly. 

To be more precise, we are mainly concerned with analytical aspects of orbital dynamics 
of artificial Earth satellites, and leave to our colleagues the task of computing highly 
eccentric Earth satellite orbits with special perturbation methods. 

Roughly speaking, for the numerical computation of orbits of artificial satellites, the 
exponent (Y =~ 1 achieves an analytical step-size regulation and is revealed to be a good 
exponent for the oblateness perturbation problem and for Earth oblateness plus third-body 
gravitational perturbations. It also exhibits a slightly advantageous behaviour over other 
exponents, even when some additional perturbations are taken into account. This same 
exponent has also been employed in analytical and qualitative studies. 

In this paper we aim to show that the approach taken by Nacozy to defining the 
intermediate anomaly is not limited to the case of elliptic motion. Indeed, as an attempt 
towards the extension and generalization of previous results by Nacozy to the case of 
hyperbolic and parabolic orbits in the Kepler motion, the present research is devoted to 
an investigation of the possibility of obtaining a general and systematic derivation of this 
kind of anomaly within a universal formulation of the two-body problem, which leads to 
a unified treatment and representation of the motion. This approach is intended in the 
following sense: .irrespective of the nature of the specific Keplerian orbit at hand, Nacozy’s 
developments will be generalized and adapted to yield a uniform treatment of Kepler motion 
(also in line with the contents of Battin 1987, sections 4.5 and 4.6, Ferrindiz and Florfa 
1990, Florfa 1993b, ch 9, Stiefel and Scheifele 1971, section 11, Stumpff 1959, ch V, 
section 41), which suggests a non-singular transition between different types of two-body 
orbits (Herrick 1965). 

In particular, we have in mind the universal-variable formulation and analytical treatment 
of perturbed Keplerian dynamical systems (e.g. the problem of perturbed highly eccentric 
elliptic orbits of artificial satellites), and the transition between reference orbits of different 
nature while performing perturbation studies, especially when a universal-like anomaly angle 
is put in the place of the independent variable. In this respect, it should be kept in mind that 
the type of orbit is occasionally changed by perturbing forces acting during afnite interval 
of time (Stiefel and Scheifele 1971, section 11, p 42). 

Some possible applications in astrodynamics, to be considered elsewhere, have to do 
with theoretical estimations concerning mission analysis, orbital manoeuvres, orbital transfer 
problems and the trajectoly optimization, two-body boundary-value problem, but also other 
practical aspects of the general problem of two bodies (not only in celestial mechanics). In 
any case, further analytical or semianalytical developments and numerical studies will be 
carried out by other members of the Grupo de Meciinica Celeste at the Departamento de 
Matemiitica Aplicada a la Ingenieria (Universidad de Valladolid). 

This approach and the subsequent developments in terms of universal vaiiables and 
parameters may be modified and find application in other domains of physics and applied 
mathematics. As far as we know, although the universal description of two-body motion 
originated from astrodynamical problems, there is no reason why the formulation should be 
restricted to such problems. An example of where this kind of treatment might be useful 
can be found in the naive classical mechanics description of scattering processes of particles 
in a potential force field (Coldstein 1980, section 3.10), as a preliminary step toward more 
accurate and rigorous quantum considerations, especially when simplifying assumptions 
concerning symmetries of the interaction are suppressed. In line with a remark by Hori 
(1961, section lo), and extending his comments, the study could be adapted to the case of 
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scattering problems, also for hyperbolic orbits of repulsive force fields. At a later stage, 
transitions between attractive and repulsive forces (as in certain models of intermolecular 
potentials used in kinetic theory of gases) could be analysed in terms of appropriate future 
modifications of our formulations. 

With this general aim in  view, an essential analytical tool is provided by certain 
classes of special functions, the so-called Stumpff c-functions (Stumpff 1959, vol I, 
sections 37 and 41, Stiefel and Scheifele 1971, section 11, pp 43-5) and universal U- 
functions (Battin 1987, sections 4.5 and 4.6, Shepperd, 1985). These functions can be 
contemplated as generalizations of the standard and hyperbolic trigonometric functions, and 
their application is intended to avoid having to distinguish between elliptic, parabolic or 
hyperbolic motion. Elliptic integrals and functions will also play a significant role in the 
subsequent developments. 

In what follows, use will be made of the customary set of symbols (a, e ,  p )  for referring 
to the well known Keplerian elements, regardless of the type of orbit; on the other hand, 
f will denote the true anomaly in the (not necessarily elliptic) Keplerian  orbit,^ and E the 
eccentric anomaly in the elliptic motion. Additional notation will be introduced in the next 
section. 

2. Some remarks on universal-like functions 

Linear differential equations can be considered to constitute the more refined, complete and 
developed area within the field of differential equations. The knowledge of fundamental 
properties &d powerful solution techniques is wider and more fundamental than that in other 
domains of the theory of differential equations. This is particularly true when referring to 
linear equations with constant coefficients. 

A classical procedure to introduce certain families of special functions is baied on the 
study of power series solutions' to linear differential equations. The Stumpff c-functions (see 
the above mentioned references to the books by Stumpff (I959), Stiefel and Scheifele (1971) 
and Battin (1987)) constitute a family of transcendental functions whose first members 
integrate, under a unified treatment, the model of second-order linear differential equations 
with constant coefficients 

irrespective of the sign of the parameter e .  It should be borne in mind that, after appropriate 
changes of the dependent and independent variables, this is just the type of equation to 
which the differential equations of motion governing the Kepler problem can be reduced, 
the parameter- e being then related to the value of the energy of the two-body system. This 
reduction is an essential aspect of the linear and regular formulation of celestial mechanics 
problems. 

By using the notation z = e$*, the general solution to the above equation can be 
represented, in terms of the single parameter z, as a linear combination of the Stumpff 
c-functions cg(z) and c,(z). the representation of the solution being independent of the sign 
and value of e .  In general, these functions obey the defining relation 

the power series being absolutely convergent for all values of the complex variable z 
(whence the series converge for all s regardless of e .) In particular, they are real-valued 
functions for real values of z . 
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When dealing with these functions, some calculations are simplified if the alternative 
universal functions introduced by Battin are used. To this end, for each IZ = 0,1,2, . . . , 
put (Stiefel and Scheifele 1971. section 11, formula (36)) 

Other equivalent defining relations can be found, e.g. in Ba&n (1987, section 4.5), or in 
Shepperd (1985, section 4). 

2.1. Basic mathematical and mechanical properties 

Many useful identities and relations involving universal-like functions can be found in the 
literature (see the previously mentioned references, Battin (1987). Shepperd (1985), Stiefel 
and Scheifele (1971). Stumpff (1959)). We restrict ourselves to summarizing some of them 
here, especially those required for future reference. 

For convenience, according to the usual practice in studies related to the DS (Delaunay- 
Similar) variables introduced by Scheifele (Scheifele 1970, Scheifele and Graf 1974, 
Scheifele and Stiefel 1972), the quantity 

is the negative of the rota1 energy of the Keplerian orbit under consideration (see Stiefel 
and Scheifele 1971, p 50, formula (64)). 

When needed, we shall take e = 2L. For further purposes, borrowing the notation from 
Stiefel and Scheifele (1971), section 11, pp 47 and 50, the abbreviation q will represent the 
distance of the pericentre, and we consider the set of formulae and notations (Stiefel and 
Scheifele 1971, pp 50-1, Battin 1987,~sections 415 and 4.6): 

r = q + pes’c2 (2~s’) = q + p e ~ 2  (s, Z L )  
dt = rds Sundman’s transformation 
r = q s  + peU3(s, 2L)  Kepler’s equation. 

Observe that the fictitious time parameter s, a universal eccentric-like anomaly 
proportional to the classical eccentric anomaly in the cases of elliptic and hyperbolic motion, 
is introduced through Stumpff s generalization (1959, section 41) of Sundman’s regularizing 
transformation (Sundman 1912, p 127), which defines s by means of the differential relation 
given in (6), where s vanishes at the chosen reference time. As a general rule, this variable 
is chosen so that the pericentre is reached fors = 0. Notice also that s only occurs implicitly 
in  the equation for the radial distance r and, in Kepler’s equation for the physical time t ,  
through the transcendental Stumpff c, and Battin Un universal functions. 

On the other hand, taking into account the universal character of the Keplerian true 
anomaly f, the parameters s and f are related to each other via the expressions (Stiefel 
and Scheifele 1971, p 51, formulae (67) and (68)) 

f icos  - = &CO ($2) 
2 
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3. A glance at some Nacozy results 

In order to put this research in context, before undertaking the presentation of the proposed 
generalizations, Nacozy's (1977) developments will be ~ briefly reviewed. Here, some 
printing mistakes detected in that paper have been amended. 

As stated above, he considered a Sundman-type transformation t + t of the time 
parameter, from the physical time r to a pseudo-time z, as given by a differential change 
of the time variable dt = c,r*dr, where a = 4; for the sake of dimensional homogeneity 
between the new anomaly angle~and the classical ones, he chose the coefficient c, = 1 /&is 
although he also pointed out that other possible choices result in some simplification 
throughout the required calculations. (Remember that, as a general rule, c, is usually 
taken either as a constant or a function of the orbital elements, mainly as a function of the 
semi-major axis a and the numerical eccentricity e.) 

The set of Keplerian formulae holding in elliptic motion 

a(1- e2) r2 
r =  1+ecos f  dt = Jmdf 

jntroduced into the above time transformation, gives 

2d0 - - 
J T + a m  

provided that, for convenience in writing, the following abbreviations had been used: 

~~ 

1 2e 
2 l + e '  

0 c - f  k 2 = -  

Then, performing the required quadratures 

one has 

-z = F (g, k )  f i  
2 

Note that, just at this point, aprinting mistake occurs in Nacozy's 1977 article, in which 
one reads (Nacozy 1977, p 310, formula (5)) 

f i  E instead of -. 
2 

The preceding formula provides the direct relationship between the intermediate  anomaly 
t and the true anomaly f in elliptic motion, with the usual symbol F(B ,  k )  for the normal 
incomplete elliptic integral of thefirst kind with modulus k and argument 8. 

By taking into account the classical relations between the true and the eccentric anomaly 
in elliptic motion, and the definition and basic properties of the Jacobian elliptic functions 
(Byrd and Friedman 1971, formulae (110.02), (120.01) and (280.00), Abramowitz and 
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Stegun 1972, sections 16.1 and 17.2, Gradshteyn, and Ryzhik 1980, section 8.14). the set 
of formulae connecting these anomalies with each other is 

L Florla and R Caballero 

f f i  sin - f = sn ( 2 7 ,  4% k) -=am(--r,k) 2 2 

J- ( l+e ) ( l - cosE)  =sn ( q r ,  k) 
2(1 -ecosE) 

where the symbols am and sn are the usual notations for the Jacobian elliptic functions 
amplitude and sineamplitude, respectively. 

4. Generalization of Nacozy's developments 

The results outlined in Nacozy (1977), and summarized in the preceding section, are easily 
extended to the case of non-elliptic orbits by realizing that the relations between the hue 
and the intermediate anomaly are formally valid irrespective of the nature of the motion at 
hand. Indeed, bearing in mind the universally valid formulae (Stiefel and Scheifele 1971 
section 11, formulae (57) and (66)). aid the usual change t + f 

along with the differential relation (l), 
r3/2 

dt = -dr 
@ 

the same conclusion is attained: 

df 
J1f ecos f 

&.- G r = F ( f , k )  . 
2 

d r  = 

Attention must be paid to appropriately interpreting the incomplete elliptic integral of the 
first kind when the modulus is not a quantity less than unity. 

If k = 1 (i.e. for parabolic orbits, in which case e = l), the preceding relation (11) 
between f and r can be readily expressed in terms of elementary functions, since in that 
case 

m s  

2 f i  
-r=- 

and the relations (see, e.g. Byrd and Friedman 1971, formulae (111.04) and (132.01), 
Gradshteyn and Ryzhik 1980, formula (2.526.9), Abramowitz and Stegun 1972, formulae 
(4.3.117) and (17.421)) 

= In(tane +sec$) = In 
1 - sin0 

imply that 

If k 1 (case of hyperbolic orbits), the well known reciprocal modulus transformation 
(Byrd and Friedman 1971, formulae (114.01), (162.02) and (283.00). Gradshteyn and Ryzhik 
1980, formulae (2.571.4), (2.595.1) and (8.127), Abramowitz and Stegun 1972, section 16.1 1 
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and formula (17.4.15)) can be used to bring the elliptic integral with the modulus greater 
than one into the form corresponding to another one with a modulus less than unity: 

whence 

On the other hand, from the well known geometrical and dynamical relations holding in 
hyperbolic Keplerian motion, in terms of the hyperbolic eccentric anomaly F, one concludes 
that 

2(1 - ecosh F) 

As for these kind of relations ((12). (13), (14) and those at the end of section 3) between 
the intermediate anomaly and some type of eccentric-like anomaly, the auxiliary variable s 
and the general representation of Keplerian motion under the uniform treatment presented 
in Stiefel and Scheifele (1971, section l l ) ,  resorting to Stumpff and universal functions (see 
section 2),  provide some analytical tools to reach this goal. Thus, advantage can be taken 
of the relation given in formula (3) of our previous section 2 and of the general formula, 
derived from (9) and (3, 

Leaving aside the requirement of dimensional compatibility between the intermediate 
anomaly and the Keplerian true and eccentric anomalies, slight simplifications in the 
reckoning work are obtained if one opts for other choices of c,. Thus, the option 

1 
c -  "-m * t  =2F(f ,k)  

while the possibility suggested by Nacozy yields 

5. Interpretation and redundancy of some alternative relations 

After some additional reckoning work, we might conclude that the search for new alternative 
direct relations between the intermediate anomaly r and the auxiliary variable s occurring 
in the universal-like functions leads us to the results presented in the preceding sections 3 
and 4, which can be contemplated as the essential and basic set of formulae. 

This assertion can be verified by establishing the corresponding relation starting from 
the differential expressions connecting these variables, t and s, with each other. To this end, 
remember that, according to the Sundman transformation (6) and the Nacozy choice (l), 
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Now, taking into account the expression (5) for the magnitude r of the radius vector in 
term of s, we obtain 

L Floria and R Caballero 

Unfortunately, we have not been able to integrate this formal relation by subsuming 
the quadrature under a unified treatment. To perform this calculation, we must limit 
ourselves to the evaluation of this quadrature after distinguishing between the three main 
cases encountered in the study of Kepler problems. As shown in Battin (1987, p 180; see 
also Stiefel and Scheifele 1971, p 43, formulae (35) and (36), and p 45). the expression of 
the universal function U2 (s, 2L) is 

S2 L = 0 : U,($, 2L) = - 
2 

L > 0 : U,@, 2L) = 

Parabola: 

1 -cos (4) 
2L 

Ellipse: 

cosh ($&E) - 1 
-2L 

Hyperbola: L e 0 : U&, 2L) = 

In the case of elliptic motion, for convenience in writing we introduce the notation 
2L = 01 > 0, and so we obtain (Byrd and Friedman 1971, formula (291.00), Gradshteyn 
and Ryzhik 1980, formula (2.571.5)) 

with the abbreviations 

B [ 1 - cos ( s 4 ]  
6 = arcsin J K 2  [ A  - B COS ( $ 4 1  

= arcsin/-. I + e  I-cos(sJE) 
2 I - ecos ( s&)  

In principle, the formula 

could be understood as giving the relation between 5 and s via S. However, in view of the 
special meaning of the variable s in elliptic motion (proportional to the eccentric anomaly 
E through the expression E = s a ,  as seen in Stiefel and Scheifele (1971, pp 38 and 50, 
formula (64)), we conclude that S = f/2, from which we recover the formula obtained by 
Nacozy (1977) (and also recorded in section 3). 

We put 
2L = a! = -6 e 0. Then (Byrd and Friedman 1971, formula (297.00), Gradshteyn 
and Ryzhik 1980, formula (2.464.41)) 

The study of the hyperbolic case is similar to that of the elliptic one. 
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with the notations 

Notice that here the quantity K < 1, and K = 1/k, where k is the same as in the preceding 
sections. Thus, the meaning of F can be elucidated if one introduces an angle y such that, 
by virtue of the reciprocal modulus transformation, 

(21) F(6 ,  K) = k F ( y ,  k) that is, 6 = arcsin(ksin y )  

from which we are led to 

e cosh ($4 - 1 
s i n P = k s i n y =  

and finally 

1 + e 1 -cosh (s@ J 2 1 - ecosh ( s f l  
siny = - 

Now, by reason of the differential relations (6), dt = rds (Sundman's transformation), 
and 

r 
dt = - FEdF 

(Floria 1993a, p 1373), one sees that s is proportional to the hyperbolic eccentric anomaly 
F through the expression F = s a ,  &d we-arrive at the certainty that y = f/Z, from 
which we reconstruct formula (14), mentioned in section 4. 

As for the parabolic orbital motion, from Gradshteyn and Ryzhik (1980, formula 
(2.271.4)), we get 

The next step resorts to the specific meaning of the variable s for parabolic orbits. From 
Stiefel and Scheifele (1971), pp 49, 48 (formula (57)), or p 51 (formulae (65)-(68)), and 
remembering the expressions of the Stumpff cz-function and the universal U,-fnnction when 
L = 0 (say, when e = 1), we obtain 

Consequently 
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the final relation being 

= ,GZ = f i ~ n  [.n (i) +sec (;)I 
as stated in section 4, formula (12). 

Final remark 

The coauthor of this research, MI Rafael Caballero, died tragically after a road accident. In 
his memory, L Florfa has completed this part of a wider plan of joint work, and written the 
present version of the paper. 
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